A linear functional strategy for regularized ranking
نویسندگان
چکیده
Regularization schemes are frequently used for performing ranking tasks. This topic has been intensively studied in recent years. However, to be effective a regularization scheme should be equipped with a suitable strategy for choosing a regularization parameter. In the present study we discuss an approach, which is based on the idea of a linear combination of regularized rankers corresponding to different values of the regularization parameter. The coefficients of the linear combination are estimated by means of the so-called linear functional strategy. We provide a theoretical justification of the proposed approach and illustrate them by numerical experiments. Some of them are related with ranking the risk of nocturnal hypoglycemia of diabetes patients.
منابع مشابه
Solving Fully Fuzzy Linear Programming Problems with Zero-One Variables by Ranking Function
Jahanshahloo has suggested a method for the solving linear programming problems with zero-one variables. In this paper we formulate fully fuzzy linear programming problems with zero-one variables and a method for solving these problems is presented using the ranking function and also the branch and bound method along with an example is presented.
متن کاملQuantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression
Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...
متن کاملGreedy RankRLS: a Linear Time Algorithm for Learning Sparse Ranking Models
Ranking is a central problem in information retrieval. Much work has been done in the recent years to automate the development of ranking models by means of supervised machine learning. Feature selection aims to provide sparse models which are computationally efficient to evaluate, and have good ranking performance. We propose integrating the feature selection as part of the training process fo...
متن کاملLarge Scale Co-Regularized Ranking
As unlabeled data is usually easy to collect, semisupervised learning algorithms that can be trained on large amounts of unlabeled and labeled data are becoming increasingly popular for ranking and preference learning problems [6, 23, 8, 21]. However, the computational complexity of the vast majority of these (pairwise) ranking and preference learning methods is super-linear, as optimizing an o...
متن کاملThe Study of Alignment between Corporate Strategy & Human Resource (HR) Strategy (Case Study: National Iranian Gas Company)
The final goal of strategic management is to implement strategic plans, Therefore the alignment between corporate strategy and functional strategy is considerable. This study investigates the degree of alignment between HR strategy and corporate strategy of the national gas company. Data collection was conducted by questionnaire by 51 questions. The content validity of questionnaire was assesse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 73 شماره
صفحات -
تاریخ انتشار 2016